i clecuronics TUTO.O]'
| Dovolopmont with Eare Tutorial

Porting the LM32 to Xilinx FPGAS

How to port the LatticeMico32 soft core processor to a Xilinx FPGAs

Introduction

In this tutorial we will guide you thru the steps required to port the LatticeMico32, the
32-bit soft core processor from Lattice, to a Xilinx FPGA. In this tutorial we will be
using the Spartan 6, XC6SLX25 (on a ZTEX FPGA Module).

Before we start it is required to download and install the necessary software tools.
You would also need a proper JTAG-programmer, to transfer the design to the
FPGA. Here is a list and download link of the software tools we are going to use:

Xilinx ISE >12.2 — the WebPACK is fine
o http://www.xilinx.com/support/download/index.htm
LatticeMico32 System
o http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view docum
ents&document type=65&sloc=01-01-08-11-48-02
Verilog replacement files
o http://www.tkjelectronics.dk/downloads/fpga/Im32/REPLACE
Intel HEX to Xilinx Coefficient (.COE)
o http://www.tkjelectronics.dk/downloads/fpga/Im32/IHEX2COE

It is also possible to download the final LatticeMico32 project for the ZTEX FPGA
Module: http://www.tkjelectronics.dk/downloads/fpga/lm32/ZTEX PROJECT

The ZIP-file includes everything needed to test the LED blinking application, using
the LatticeMico32 core on the ZTEX FPGA Module. The ZIP-file contains:

e The LatticeMico32 project

e The Xilinx project

e The LatticeMico32 Managed C-code project.

TKJ
© TKI Electronics Rev. 3 - February 2011 1/17

http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html�
http://www.xilinx.com/support/download/index.htm�
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=65&sloc=01-01-08-11-48-02&source=sidebar�
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=65&sloc=01-01-08-11-48-02&source=sidebar�
http://www.tkjelectronics.dk/downloads/fpga/lm32/REPLACE�
http://www.tkjelectronics.dk/downloads/fpga/lm32/IHEX2COE�
http://www.tkjelectronics.dk/downloads/fpga/lm32/ZTEX_PROJECT�

Porting the LM32 to Xilinx FPGAs TUTO001

Steps

The overall steps in this tutorial are the following:

Create a LatticeMico32 project

Modify the generated Verilog files to match Xilinx FPGAs
Import the Verilog files into Xilinx ISE

Add the Xilinx Block RAM (BRAM)

Hello World example for the processor

aokrwnhpE

1. Create a LatticeMico32 project

Create the MSB
e Open the LatticeMico32 System IDE.

= MSB - Eclipse Platform =

File Edit Mavigate Project Window Help
mifhd |& 08 - rHrora

£ (B Mse @ C/ce+ %5 Debug

(&) Available Components 53 =8 =8

GYPO R A

-4k Memory (0/8)

f SDRAM Controller 3.5)

£ On-Chip Memory (33)

$ On-Chip Dual-Port Memory (31)
{8 DDR SDRAM Controller (+6.7)
8 DDRZ SDRAM Contraller (v6.7)
f SPIFlash (3.3)
~f¢ Parallel Flash (3.0)

$ Async SRAM (3.0)
= 10 (0/10)

& PCLLTarget 33 (6.1)
~ft DMAE2)

ft UART (3.5)
A9 Tri Speed MAC (13.2)

f Timer 3.0)

~f SPLEL)

f slave_passthru 31)

$t master_passthru (3.2)

~ft OPENCORES I2C Master (31)

R GPIO32)
e CPU (0/1)

f LatticeMico32 3.5)

Selected element nan [Selected element versic

Console 2 . Asynchronous SRAM Controller F» = O|[Component Attributes | El Console £3 =8

“ | Type Component Message No consoles to display at this time. =B -5

After you have opened the IDE you will see the main window. As you probably notice,
it is an eclipse based IDE. On the left the “hardware” part of our LatticeMico32
controller is listed, the so called IP Cores. The ones with a RED mark is licensed, and

you would have to buy a license from Lattice to use it.

TKJ
© TKI Electronics Rev. 1 - February 2011 2/17

Porting the LM32 to Xilinx FPGAs TUTO001

Let's start creating a project.
e File — New Platform
5 S5)

New Platform Wizard

This wizard creates a new platform.

Platform name: tutdl Overwrite existing platform.

Directory: Ch\Elektronil\ FPGAN\LME2\SpartanG!

VHDL Setting

[] Create VHDL Wrapper Create VHDL NGO file.

Frequency Setting Arbitration Scheme

Board Frequency(MHz): 48 Scheme: [Shared Bus (Default) ']
Processor Device Family

Processon [LN‘B?_ - Family: lLatticeEC 'l Device: [AII ']

Awailable Platforms
[7] Clone Platform

Platform Templates

m + | New platform without any components,

Platform&
PlatformB
PlatformC
PlatformD
PlatformE
PlatformF
PlatformG
PlatformH i i

m

@ [Finish || Concel |

b

The “New Platform Wizard” will pop-up. In the screen you would need to enter the
following:

¢ Platform name: The name of you SoC

e Frequency Setting: The clock frequency of the CPU
o This should be the input frequency (fcpu = finput)

In this tutorial I will use “tut01” as the name and 48MHz as the frequency (48MHz

input). After you have finished entering the settings, you will get to the main window,
but now with a new “view”.

TKJ
© TKIJ Electronics Rev. 1 - February 2011 3/17

Porting the LM32 to Xilinx FPGAs

TUTOO01

= MSB - tutD1 - Eclipse Platform

File Edit Mavigate Project Platform Tools Window

3 & i0@E ik~ =
£ [M5B | F& C/C++ %5 Debug
@)A\rallab\ECompunents x4 =8 tutdl &2

SIPE A
=-{r Memory (0/8)
-ft SDRAM Controller (3.5)
-f On-Chip Memory (33}
-§ On-Chip Dual-Port Memory (3.1)
0 DDR SDRAM Controller (v6.7)
0 DDR2 SDRAM Controller (v6.7)

§t SPIFlash 3.3)
$t Parallel Flash (3.0)
$ Async SRAM (3.0)
=i 10 (0/10)

& PCILTarget 33 (+6.1)

£ DMA .2

-ft UART 3.5)

A8 Tri Speed MAC (v3.2)
R Timer (3.0)

-f SPIEL)

-§ slave_passthru (3.1)
-§% master_passthru (3.2)

Ft OPENCORES [2C Master (3.1)
GPIO(3.2)

& CPU (0/1)
§ LatticeMico32 (3.5)

Help
oo

Name

Wishbone Connection

Bnha

Base Size(Bytes) Lock

RQ

Disable

Now you’ve created the project and the “motherboard” where we will place the SoC.

Adding the CPU

Every System on a Chip (SoC) needs an cpu, so we will now add the LatticeMico32.

e Double click on the LatticeMico32 in the list to the left.

= Add LatticeMico32

|

General | Inline Mel‘ﬂo[‘f|

Instance Name

Settings

[] Use EBRs for Register File
Enable Divide

Enable Sign Extend

Location of Exception Handlers 0x00000000

Multiplier Settings

[#] Enable Multiplier

@ Enable Pipelined Multiplier (DSP Block if available)
() Enable Multicylce (LUT Based, 32 cycles) Multiplier

Instruction Cache

[[1Instruction Cache Enabled MNumber of Sets | 512
Set Associativity |1

Bytes/Cache Line |16

LM32
Debug Setting
[] Enable Debug Interface
of H/W Watchpoint Registers | 0
Enable Debugging Cede in Flash or ROM
of H/W Breakpoint Registers | 0
[] Enable PC Trace

Trace Depth 1024

Shifter Settings
@ Enable Pipelined Barrel Shifter

() Enable Multicycle Barrel Shifter (upto 32 cycles)

Data Cache

[] Data Cache Enabled Mumber of Sets | 512
Set Associativity |1

Bytes/Cache Line |16

Memory Type @ Auto Distributed RAM Memaory Type @ Auto Distributed RAM
Dual-Port EBR Pseudo Dual-Port EBR Dual-Port EER
[aK] [Cancel] [Help]

e

A new window will open giving you the change to customize the CPU. We will have to

make some minor adjustments to get it working on a Xilinx FPGA.

TKJ
© TKIJ Electronics

Rev. 1 - February 2011

4/17

Porting the LM32 to Xilinx FPGAs TUTO001

e Disable Debug Interface (JTAG eg.)
¢ Also Disable the Instruction Cache and Data Cache

o This is big, and can cause problems on some FPGAS, especially the

smaller ones

The “Location of Exception Handlers” will be the address in the RAM where the CPU

starts executing code from.

e Now press “OK”.

tutll 52

Mame Wishbone Connection Ba:

- LM32
Instruction Port]
Data port - = 1

1

The LM32 will now be added to the view on the right. As you will notice the CPU has
two Wishbone connections: One RW for RAM/memory and other peripherals, and

one for the instruction memory.

Adding memory

Our CPU will also need to have some RAM to store the code and runtime variables.
e Double click on “On-Chip Memory” in the list to the left

[2 Add On-Chip Memary [é]

Instance Name memory

Base Address 0x00000000

Size of Memory (in Bytes) 4096

Memaery File
Initialization File Mame none Browse...
File Format | hex v|
WISHBOME Configuration
WISHBONE Data Bus Width |32 - |
OK] | Cancel | | Help |

TKJ
© TKI Electronics Rev. 1 - February 2011 5/17

Porting the LM32 to Xilinx FPGAs TUTO001

Another window will open, giving you the chance to change the settings of the On-
Chip Memory, which will be the Xilinx Block RAM (BRAM).

The only settings that are important for us are “Instance Name”, “Base Address” and
“Size of Memory”
e Instance Name: Choose a logic name for the memory like, like “memory”
e Base Address: Has to be the same as the “Location of Exception Handlers”,
so the CPU will start executing code from this memory

e Size of Memory: 4KB (4096) will be enough for this test

e Press “OK”
*tut0l I3
Mame Wichbone Connection Baze End Size(Bytes) Lock IRQ Disable
= LM32 O
Instruction Port 0
Data port 1
= memory O

EBR Port 000000000 Ox00000FFF 4096 O

At this moment, the memory isn't connected to the CPU though.

e So click on the two BLUE circles.

“tutdl 53
Mame Wishbone Connection
- LM32
Instruction Port >—{:I ‘
Data port » 1
- memory
EBR Port

Now the memory is connected to the Instruction port and the Data port. This is the

best solution to start with, but it makes a risk: It IS possible to overwrite the memory!

TKJ
© TKI Electronics Rev. 1 - February 2011 6/17

Porting the LM32 to Xilinx FPGAs TUTO001

Adding the GPIO
To do something useful with our SoC, we need to provide some connection to the
outside world.

e Double Click on “GPIO” in the list to the left
[= Add GPIO &r

Instance Mame gpio

Base Address 080000000

Port Types Input/Output Port Widths

@ Output Ports Only Data Width 8— x
Input Ports Only

Input Width |1
Tristate Ports

Both Input and Output Output Width | 1

IRQ Mode
IRQ Mode Level Sensitive Edge Sensitive
Edge Response
Either Edge Postive Edge Megative Edge
WISHBONE Configuration
WISHBONE Data Bus Width |32 -|
oK] | Cancel | | Help |

The only settings that are important for us are “Instance Name” and “Data Width”. For
the tutorial we will just need 8 outputs, so leave the rest as default, but:

¢ Instance Name: Choose a logic name for the GPIOs, like “GPIO”

e Data Width: As we need 8 outputs, write 8

e Now press “OK”.

Generate the Verilog files
We are now finished setting up our SoC with the CPU, RAM and peripheral. The next
step is to generate the Verilog files, which will be imported into Xilinx ISE.

a0Dnae

To start the generation process, click the blue G in the top bar.

TKJ
© TKI Electronics Rev. 1 - February 2011 7/17

Porting the LM32 to Xilinx FPGAs TUTO001

Console bt GPIO Core =0
Info:AutoAddress:5un Feb 27 18:53:43 GMT 2011 Start Address Generation | Type Component Message -
InforAutofddress:Sun Feb 27 18:53:43 GMT 2011 End Address Generation - .

Info:RQ:Sun Feb 27 18:53:43 GMT 2011 Start IRQ Generation Info IRQ Finish IRQ Generation
Info:IRQ:Finish IRQ Generation Info Generator Save Platform

Info:Generator:Save Platform Info DRC Sun Feb 27 18:53:43 GMT 2011 Start DRC
Info:DRC:Sun Feb 27 18:53:43 GMT 2011 Start DRC

Info:DRC:End DRC. Total errors 0 Info | DRC End DRC. Total errors 0
Info:Generator:Sun Feb 27 18:53:43 GMT 2011Start Generator Info Generator Sun Feb 27 18:53:43 GMT 2011 5tart Generator £
Info:Generator:Platform file -> C:\Elektronik\FPGA\LM32\Spartand\tutd1sochtutll Info Generator Platform file -» Ch\Elektronik\FPGAN\LM32\Spartan6\tutl1\soq
Info:Generator:RTL file -> C\Elektronik\FPGA\LM32\Spartan6\tut1\soc\tutdl.v Info Generator RTL file -> C:\Elektronik\FPGA\LM32\Spartan6\tut0]\soc\tutl
Info:GeneratorFinish Generator -

_ | Info Generator Finish Generator an
4 1 [3 4 1 3

When you at the bottom of the screen, in the Console window, see the “Finish

Generator” message, it means that the Verilog files have now been generated.

2. Modify the generated Verilog files

Before we can import the Verilog files into Xilinx ISE, we have il Im32_addsub.v

to modify some of them, to make them match with the Xilinx @l Im32_ram.v
FPGAs. To do so you need to download our replacement files, [l tpio.v

listed on the first page of this guide. wh_ebr_ctrl.v
When this is done, you should open the project folder of the gpic
LatticeMico project. In there you would see two folders, Im32_top
“components” and “soc”. Enter the “components” folder. In there wh_ebr_ctrl

you would see 3 folders, “gpio”, “lm32_top” and “wb_ebr_ctrl”. Those are the folders
which contains the Verilog code for the three different things we added to our SoC.

Im32_addsub.
g]] |:32_?am5:}'m32—tﬂpm|J"'-"E|'i|01_:l

tpiov———gpiofrtl/iverilog

wb_ebr_ctrlv —wh_ebr_ctri/rtl/iverilog
You should now replace the 4 files in these 3 folders with the corresponding re-
placement file, like shown in the image above. The last thing we should do is to re-

move this line from the “Im32_include_all.v” inside the “Im32_top” folder:

“include "pmi_def.v"
The “pmi_def.v” file, which this line is including, is a simulation file, though this simu-
lation is only possible with Lattice FPGAs! Now let’'s move on and get the files im-

ported into Xilinx ISE.

TKJ
© TKI Electronics Rev. 1 - February 2011 8/17

Porting the LM32 to Xilinx FPGAs

TUTOO01

3. Import the Verilog files into Xilinx ISE

Import the Verilog files

As we have now modified the files, we are ready to import them into Xilinx ISE. First

you would have to create a project for you specific FPGA. In this tutorial we will be
making a project for the Xilinx Spartan 6 FPGA XC6SLX25 device.

@ E MNew Project Wizard
Project Settings
Specify device and project properties.
Select the device and design flow for the project
Property Mame Value
Product Category All |z|
Family Spartan6 |Z|
Device XCBSLH2S [+
Package FTG256 [~
Speed -3 E
Top-Level Source Type HDL
Synthesis Tool KST (WHDL Verilog) |z|
Simulator ISim (VHDL/ Verileg) |Z|
Preferred Language VHDL |z|
Property Specification in Project File | Store all values |Z|
Manual Compile Order 0
VHDL Source Analysis Standard VHDL-83 |Z|
Enable Message Filtering 0
) e

After you have created a project, right click on the device name in the Hierarchy view,

and select “Add Source”.

Design

[0 | View: =] ﬁﬁlmplemenbﬁon

B8 simulation

[8 x

£=| | Hierarchy

-

HIEJ =% # xchchad5-Iftg25

e |30 |

left, commands |
panels,

#2 Mo Processes Runnir

Ma single design mode
% Design Utilit

B[R A|V [«

[0 Mew Source...
g Add Source...
The view curren EIEJ Add Copy of Source...

Manual Compile Order
P Implement Top Module
File/Path Display

Expand All
Collapse All

My Find...

Design Properties...

: project using the toolbar at 4
sign, Files, and Libraries

i © TKJ Electronics

Rev. 1 - February 2011

9/17

Porting the LM32 to Xilinx FPGAs

TUTOO01

Next you should find the tutO1.v file, in the “soc” directory in the Lattice project folder.

E Add Source

Organiser «

-

[Favoritter
& Overfarsler
= Seneste steder
Bl Skrivebord
i Dropbox

4 Biblioteker
=/ Billeder
3 Dokumenter
& Musik
EE videoer

m

% Hjemmegruppe | 4

18 Computer
£, Lokal disk (C:)
&% Blu-rav Disc-ROM-d ™

MNavn

IE] system_confw
tutll.v
IE] tutll_inst.v

Filnavn: tut0l.v

=

ZEndringsdato Type

27-02-2011 19:53 Verilog File
27-02-2011 19:53 Verilog File
27-02-2011 19:53 Verilog File

Sterrelse
1KB
18 KB
3KB

P —
——
A | . v Computer » Lokal disk (C:) » Elektronik » FPGA » LM32 » Spartan6 o tutdl » soc) v|¢,|| Sag i soc }Dl
Ny mappe == (7]

- [Sources(et *wvhd *vhdl vt v]

[Abn

| [Annuter |

Press “OK” to the popup box, telling you if the source can be added. If everything

went well, you should now have a Hierachy looking like this.

Hierarchy
=] ISE

=t £ ixchsh5-3ftg56

=[]

B

0

S)

el o el oa oall el Eos)

W

[Automatic ‘includes
=] ﬁﬁﬂ tutll (CAElektronik\FPGANVLM32\SpartantttutDlsochtut)l . v)
arbiter - arbiter2 (CA\Elektronik\FPGANLM3Z2NSpartant tutllsochtutdl.v)
=] LM32 - Im32_top (C:\Elektronik\ FPGANLM32\ Spartanbitut)]\ componentsl...

cpu - Im32_cpu (ChElektronik) FPGANLMI2\Spartandh tutll\ component...
instruction_unit - Im32_instruction_unit (ChElektronikh FPGALLM32M...
decoder - Im32_decoder (C\Elektronik\FPGANLM32\Spartant tut(l...
load_store_unit - Im32_load_store_unit (ChElektronilkd FPGALNLMI2YS...
adder - Im32_adder (C:\Elektronik\ FPGA\LMI2\Spartanthtut01\ com..,
legic_op - Im32_logic_op (C\Elektronik\FPGANLM32\ SpartanG tutll...
shifter - lm32_shifter (C:\Elektronild FPGANLMS2\Spartantitutllico...

multiplier - Im32_multiplier (C\Elektronik\FPGA\LMS2\Spartandtut..,
me_arithretic - lm32_mc_arithmetic (C\Elektronik\ FPGANLM32\5p...

|-y =]=<]=]<

b

interrupt - Im32_interrupt (CAElektronik FPGANLMS 2\ Spartand tutd...

-] memory - wh_ebr_ctrl (C:h\Elektronik FPGANLM32\ Spartanitutl]l\ compon...

ram - pmi_ram_dp (ChElektronikh FPGANLMS 2\ SpartandhtutO1ISEY)
ram - pmi_ram_dp (C\Elektronikd FPGANLM32\ Spartan&htutD1\ISEY)

gpio - gpic (CAElektronik\FPGA\LM32\ Spartandt tutll\ componentshgpicir.

TP - TRI_PIO (C:\Elektronikh FPGANLM32,Spartandhtutl]l\ componentshg...
TP - TRI_PIO {(C:\Elektronik\ FPGANLMI 2N SpartanEitutll\ componentshg...
TP - TRI_PIO (C:\Elektronikh FPGANLM32,Spartandhtutl]l\ componentshg...
TP - TRI_PIO {C:AElektronikh FPGANLMI 2\ SpartanEitutDLl\ componentshg...
TP - TRI_PIO {(C:h\Elektronikh FPGANLM32,Spartandhtutl]l\ componentshg...
TP - TRI_PIO {C:\Elektronik\ FPGANLM32\Spartanditutll componentshg...
TP - TRI_PIO {(C:h\Elektronikh FPGANLMI2\Spartandhtutl]l componentshg...
TP - TRI_PIO (CElektronik\ FPGANLM32N Spartanditutll\ componentsig...

© TKIJ Electronics

Rev. 1 - February 2011

10/17

Porting the LM32 to Xilinx FPGAs TUTO001

Create a wrapper for the LM32 Verilog files

As the files are now imported into our project, we should make a wrapper in either
Verilog or VHDL for the LM32 Verilog code. Right click on the device name in the
Hierarchy view, and select “New Source”. Next select “VHDL Module” or “Verilog

Module”.

“timescale 1ns / 1ps library IEEE;
use IEEE.STD_LOGIC_1164_ALL;
module main(
input clk, entity main 1iIs
input rst, port (
output [7:0] led clk: in std_logic;
); rst: in std_logic;
led: out std_logic_vector(7 downto
0)
tut0l SOC ();
-clk_i1(clk), end main;
.reset_n(rst),
-gpioPI0_OUT(led) architecture Behavioral of main is
); component tutOl
port (
clk _i: in std_logic;
endmodule reset_n: in std_logic;
gpioPIO_OUT: out
std_logic_vector(7 downto 0)
)
end component;
begin
LM32: tutOl
port map (clk_i => clk, reset_n =>
rst, gpioPI10_OUT => led);
end Behavioral;
Verilog-wrapper VHDL-wrapper

This is the wrapper code in either Verilog or VHDL. When you have saved the wrap-
per file, you should notice that the wrapper file will be the Top Module, and that the

tutO1 will be shown underneath.

= 15E
= B xcBshad5-3ftg256
[Automatic ‘includes

main - Behavicral (C\Elektronik FPGANLMS2\ Spartan tutD1NSE main.vhd)

=] LM32 - tutll (ChElektronik\FPGANLM32Y SpartanEhtutdl\sochtutll.)
arbiter - arbiter2 (Ch\ElektronikhFPGANLM32 SpartanGhtutll\soctutll.v)
=] LM32 - Im32_top (C\Elektronik\ FPGANLM3I2\ Spartand'tutll\ componen..,
=] cpu - Im32_cpu (C\Elektronik\FPGA\LMS2\Spartanfitut)1\compon...

TKJ
© TKI Electronics Rev. 1 - February 2011 11/17

Porting the LM32 to Xilinx FPGAs TUTO001

Create a constraint file for the FPGA

Now our wrapper is done, so let’'s make the constraint file too. Right click on the Top
Module file in the Hierarchy view, and select “New Source”. Next select “Implementa-
tion Constraints File”.

The constraint file for the board | have (the ZTEX Spartan 6 module) contains the

following lines, but remember this can be different from board to board.

48 MHz EZ-USB clock
NET "clk™ TNM_NET = *clk';
TIMESPEC *“ts_clk™ = PERIOD **clk™ 20.833 ns HIGH 50 %;
NET "clk™ LOC = ""K14"™]| I0STANDARD = LVCMOS33 ;
NET "led<0O>" LOC = "Al14" | I10STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<1>" LOC = "C13" | I10STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<2>" LOC = "D11" | I0STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<3>" LOC = "D12" | I0STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<4>" LOC = "F10" | I0STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<5>" LOC = "E11" | I0STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<6>" LOC = "E10" | I0STANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<7>" LOC = "C10"™ | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "'rst" LOC = "B14"™ | I10STANDARD = LVCMOS33 ;
Constraint file for the ZTEX Spartan 6 module
4. Add the Xilinx Block RAM (BRAM)
Now when we are done with the wrapper and the constraint = memory - wh_ebr_ctrl

ram - pri_ram_dp
ram - pri_ram_dp

have noticed the orange question marks? Those indicate that something is missing.
To add a Xilinx Block RAM we -

file we are still missing the Xilinx Block RAM. You might

Select Source Type

are golng to use the Core Ge- Select source type, file name and its location.
BMM File
nerator, So one more time right Impementation Conarmnts e

*% 1P (CORE Generator & Architecture Wizard)

click on the Top Module file in e
=| User Document
the Hierarchy view, and select ! Verlog odde —_
hy] VHDL Module
“New Source”. Next select “IP YHDL Library e —
T VHDL T::t Eﬂg:(h Elektronik\FPGALM32\Spartans\tutD 1\ISE \ipcore_dir |_|
(CORE Generator & Architec- IF] Embedded Processor

ture Wizard)”. As filename just

write “memory”, and then press

V| Add to project

“ N eXt" . More Info Cancel

TKJ
© TKI Electronics Rev. 1 - February 2011 12/17

http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html�

Porting the LM32 to Xilinx FPGAs TUTO001

Now you should find and select “Memories & Storage Elements — RAMs & ROMs —

Block Memory Generator”.

: (=)
@ @ Mew Source Wizard

Select IP

Create Coregen or Architecture Wizard IP Core.

View by Function View by Name

~/ Debug & Verification

~/ Digital Signal Processing

' FPGA Features and Design

' Math Functions

Memories & Storage Elements

Version Status License

o-E-E-E-w| Z
ey 3
m

m

v FIFOs
7 Memaory Interface Generators
=)/ RAMs & ROMs
"% Block Memory Generator Production
% Distributed Memery Generator 5.1 Production
o 5% Ckamdard Do Todnfarar e
Search IP Catalog:
[Al 1P versions [] only IP compatible with chosen part
e) Lo]

In the Wizard you should just leave everything as default except the following:
e Write Width (page 2) — 32
0 We set this to 32 as we are using a 32-bit architecture, and therefor the
RAM should also be 32-bit
e Write Depth (page 2) — 1024
0 We set this to 1024, because we told the Lattice to have a RAM of 4096
bytes, which is equal to 1024 32-bit variables (4096 / 4)

e Use RSTA Pin (page 4) — Should be checked Port A
Port A Options Use RSTA Pin (set/reset pin)
Memaory Size
Write Width | 16 Range: 1..1152 Read Width: |16
Write Depth |16 Range: 2..9011200 Read Depth: 16
Operating Mode Enable
@ Write First @ Always Enabled
) Read First 1 Use EMA Pin
(") No Change

When

this is done, press “Generate” — this can take a while depending on your computer.

TKJ
© TKI Electronics Rev. 1 - February 2011 13/17

Porting the LM32 to Xilinx FPGAs TUTO001

When the Block RAM generation has finished the question o [LM32 - Im32_top (¢

marks should have disappeared, and been replaced by a = agmory - wh_ebr_
MEMary - Memn

lightning bulb. Now we have generated the memory for our + dpio - gpio (C:\Elek
_ _ _ [t Ch\Elektronik\FPGA\LN
SoC, so the last thing to do now is to make the code that is

going to be stored inside that RAM!

5. Hello World example for the processor

Create and compile the Hello World example

Head back to the LatticeMico32 System IDE and select the C/C++ perspective. Next
we should add a new C project.

e File - New — Mico32 Managed Make C Project

Mico32 Managed Make Project Wizard y
Mico32 Managed Make Project Wizard Setting i

Project Name: LEDBlink

= Mew Project @
=1
Project contents

Location C:\Elektronik\FPGANLM32\Spartan&\LEDBlink
Select Target Hardware

MBSE System: C:\Elektronil\FPGA\LM32\Spartanfitutd]\sochtutdl.msb Browse...
Select Project Ternplates

blank project a | Description

CFIFlashProgrammer
DMATest

hello world

LCD Timer Test
LED75egsTest
LEDTest

LEDTest small size

m

MicroCOS LED 75egs App
MicroCOS LED UART App
minimal skeleton
Opencores I2C test
SPIFlashProgrammer
TimerTest -
LIART Erhn

@ [Finish

Cancel |

Name the system what you want, but make sure the MSB System is set to the MSB
you made in the beginning. Press “Finish” when it's correct.
In the left you will now see the new project. Right click to add the C file.

e New — Source File

e Name the source file main.c

TKJ
© TKI Electronics Rev. 1 - February 2011 14/17

Porting the LM32 to Xilinx FPGAs TUTO001

At this moment you should now see a blank window where you can write. In there
you should add the following code which makes the 8 LEDs, on our GPIO, alternate
(blink).

#include "MicoUtils.h"
#include "MicoGP10.h"
#include "stdio.h"

#include "DDStructs.h"
#include *"LookupServices.h"
#include "MicoFileDevices.h"

int main(void){
unsigned char cnt = 0;
int i;

MicoGPIOCtx_t *leds = (MicoGPIOCtx_t *)MicoGetDevice(''gpio™);

while(1){
MICO_GPIO_WRITE_DATA(leds, OxAA000000);
MicoSleepMilliSecs(100);

MICO_GPI10_WRITE_DATA(leds, 0x55000000);
MicoSleepMilliSecs(100);

}

return(0);

Hello World code for the LM32 processor

Make sure the “gpio” in the code is the same as the name of your GPIO (if you
named it differently). When this is done, go to “Project — Build All” to compile the
project. This would make an ELF file, which we are now going to convert into an Intel
HEX file.

i Tools Search RBun Window Help
F T G - @ M

C
| Build Al A Cr+B [oie

coltils.h"

coGEIC.h"
diao.h"

Build Project Structs.h"

Build Working Set » okupServices.h"

Clean coFileDevices.h"

Build Automatically

d) i
char cnt = 0;

Properties
MicoGPIOCLx t *leds = (Micol

TKJ
© TKI Electronics Rev. 1 - February 2011 15/17

Porting the LM32 to Xilinx FPGAs TUTOO01

Convert the ELF file into an Intel HEX file
When the build is done (“Build complete for project...”) you should open the “Lattice-
Mico32 System SDK Shell”, which has also been installed.

@F LatticeMico32 System SDK Shell = |- & |[mE3a)

[¥] § cd Cz/

[/cygdrivesc] $ cd elektronik FPGA-LM32/Spartanb/LEDBlink
[/cygdrive celektronik-FPGA~LM32 Spartanb-LEDBlink] % cd debhug
[/cygdrivec/elektronik-FPGA-LMI2 Spartanb LEDBlink/debugl & _

In that shell you navigate to the debug folder in the C-project directory. When you are

in the debug folder, you write the following command to create an Intel HEX file.
“Im32-elf-objcopy LEDBIink.elf -O ihex LEDBIink.hex”

Replace the “LEDBIink” with the name of your C-project if different. Now should

should have an Intel HEX file in the debug folder.

Convert the Intel HEX file into a Xilinx Coefficient (.COE)

od HEQCOE [o |[& |[xE3a)

| Open Intel HEX |

Unfortunately we can’t load a HEX file directly into

the Xilinx Block RAM, so it has to be converted into a

so called Xilinx Coefficient. This can be done with

our “IHEX2COE” program. Start the program and [Convett and Save Xiirx COE |

press “Open Intel HEX”. Now find and select the | e |

HEX file, generated previously. Next press “Convert
and Save Xilinx COE” and save the Xilinx Coefficient file somewhere (remember the

.COE extension)

]

© TKI Electronics Rev. 1 - February 2011 16/17

Porting the LM32 to Xilinx FPGAs TUTO001

Loading the Xilinx Coefficient into the Block RAM
The last thing to do now is just to load the Coefficient file into the Block RAM and
then synthesize. Reopen the Xilinx ISE and the project, and double-click on the

“memory”, the one with the lightning bulb at the left. The Core Generator would now

0 p en ag al n. * Block Memory Generator =8 EcR ===

View

P Symbol 8 X

kgic :** Block Memory Generator

Optional Qutput Registers
Port A
["] Register Port A Output of Memory Primitives

["] Register Port A Output of Memory Core

LA U] LA Register Port A Input of SoftECC logic
DINA[15:0]. .
Use REGCEA Pin (separate enable pin for Port A output registers)

Pipeline Stages within Mux |0 Mux Size: 1632936x1
Latency added by output register(s):

Port A: 0 Clock Cycle(s)
For Spartan-6 Latency information may not be accurate

Memory Initialization
[] Load Tnit File

Coe File no_coe_file_loaded Browse Show

Fill Remaining Memory Locations

Remaining Memoary Locations (Hex) |0

o IP Symbol |¢\: e ‘ [Qatasheet] [< Back] Page 3 of 5 [Next >] [Generate] [Cancel I [Help
3 J

Go to page 3 and check the “Load Init File”. You should now be able to click
“Browse” and select the .COE file generated previously. When the file has been se-
lected just press “Generate” — again this could take a while depending on your com-

puter. Press “OK” to the popup box, asking you to confirm overwriting.

Now there is only one thing left to do, and it is to Synthesize the project and Gener-
ate a bit-file. Do this by selecting the Top Module and then double-click on the

“Generate Programming File”.

Processes: main - Behavioral

= Design Sumrary/Reports

Design Utilities
User Constraints
P2 Synthesize - X5T
?J Implement Design
. (Generate Programming File N
G Configure Target Device

8 Analyze Design Using ChipScope

i © TKJ Electronics Rev. 1 - February 2011 17/17

