
 © TKJ Electronics Rev. 3 - February 2011 1/17

TUT001
Tutorial

Porting the LM32 to Xilinx FPGAs
How to port the LatticeMico32 soft core processor to a Xilinx FPGAs

Introduction
In this tutorial we will guide you thru the steps required to port the LatticeMico32, the
32-bit soft core processor from Lattice, to a Xilinx FPGA. In this tutorial we will be
using the Spartan 6, XC6SLX25 (on a ZTEX FPGA Module).

Before we start it is required to download and install the necessary software tools.
You would also need a proper JTAG-programmer, to transfer the design to the
FPGA. Here is a list and download link of the software tools we are going to use:

• Xilinx ISE >12.2 – the WebPACK is fine
o http://www.xilinx.com/support/download/index.htm

• LatticeMico32 System
o http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_docum

ents&document_type=65&sloc=01-01-08-11-48-02
• Verilog replacement files

o http://www.tkjelectronics.dk/downloads/fpga/lm32/REPLACE
• Intel HEX to Xilinx Coefficient (.COE)

o http://www.tkjelectronics.dk/downloads/fpga/lm32/IHEX2COE

It is also possible to download the final LatticeMico32 project for the ZTEX FPGA
Module: http://www.tkjelectronics.dk/downloads/fpga/lm32/ZTEX_PROJECT

The ZIP-file includes everything needed to test the LED blinking application, using
the LatticeMico32 core on the ZTEX FPGA Module. The ZIP-file contains:

• The LatticeMico32 project
• The Xilinx project
• The LatticeMico32 Managed C-code project.

http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html�
http://www.xilinx.com/support/download/index.htm�
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=65&sloc=01-01-08-11-48-02&source=sidebar�
http://www.latticesemi.com/dynamic/index.cfm?fuseaction=view_documents&document_type=65&sloc=01-01-08-11-48-02&source=sidebar�
http://www.tkjelectronics.dk/downloads/fpga/lm32/REPLACE�
http://www.tkjelectronics.dk/downloads/fpga/lm32/IHEX2COE�
http://www.tkjelectronics.dk/downloads/fpga/lm32/ZTEX_PROJECT�

TUT001 Porting the LM32 to Xilinx FPGAs

2/17

© TKJ Electronics Rev. 1 - February 2011

Steps
The overall steps in this tutorial are the following:

1. Create a LatticeMico32 project
2. Modify the generated Verilog files to match Xilinx FPGAs
3. Import the Verilog files into Xilinx ISE
4. Add the Xilinx Block RAM (BRAM)
5. Hello World example for the processor

1. Create a LatticeMico32 project
Create the MSB

• Open the LatticeMico32 System IDE.

After you have opened the IDE you will see the main window. As you probably notice,

it is an eclipse based IDE. On the left the “hardware” part of our LatticeMico32

controller is listed, the so called IP Cores. The ones with a RED mark is licensed, and

you would have to buy a license from Lattice to use it.

TUT001 Porting the LM32 to Xilinx FPGAs

3/17

© TKJ Electronics Rev. 1 - February 2011

Let's start creating a project.

• File → New Platform

The “New Platform Wizard” will pop-up. In the screen you would need to enter the

following:

• Platform name: The name of you SoC

• Frequency Setting: The clock frequency of the CPU

o This should be the input frequency (fcpu = finput)

In this tutorial I will use “tut01” as the name and 48MHz as the frequency (48MHz

input). After you have finished entering the settings, you will get to the main window,

but now with a new “view”.

TUT001 Porting the LM32 to Xilinx FPGAs

4/17

© TKJ Electronics Rev. 1 - February 2011

Now you’ve created the project and the “motherboard” where we will place the SoC.

Adding the CPU
Every System on a Chip (SoC) needs an cpu, so we will now add the LatticeMico32.

• Double click on the LatticeMico32 in the list to the left.

A new window will open giving you the change to customize the CPU. We will have to

make some minor adjustments to get it working on a Xilinx FPGA.

TUT001 Porting the LM32 to Xilinx FPGAs

5/17

© TKJ Electronics Rev. 1 - February 2011

• Disable Debug Interface (JTAG eg.)

• Also Disable the Instruction Cache and Data Cache

o This is big, and can cause problems on some FPGAs, especially the

smaller ones

The “Location of Exception Handlers” will be the address in the RAM where the CPU

starts executing code from.

• Now press “OK”.

The LM32 will now be added to the view on the right. As you will notice the CPU has

two Wishbone connections: One RW for RAM/memory and other peripherals, and

one for the instruction memory.

Adding memory
Our CPU will also need to have some RAM to store the code and runtime variables.

• Double click on “On-Chip Memory” in the list to the left

TUT001 Porting the LM32 to Xilinx FPGAs

6/17

© TKJ Electronics Rev. 1 - February 2011

Another window will open, giving you the chance to change the settings of the On-

Chip Memory, which will be the Xilinx Block RAM (BRAM).

The only settings that are important for us are “Instance Name”, “Base Address” and

“Size of Memory”

• Instance Name: Choose a logic name for the memory like, like “memory”

• Base Address: Has to be the same as the “Location of Exception Handlers”,

so the CPU will start executing code from this memory

• Size of Memory: 4KB (4096) will be enough for this test

• Press “OK”

At this moment, the memory isn't connected to the CPU though.

• So click on the two BLUE circles.

Now the memory is connected to the Instruction port and the Data port. This is the

best solution to start with, but it makes a risk: It IS possible to overwrite the memory!

TUT001 Porting the LM32 to Xilinx FPGAs

7/17

© TKJ Electronics Rev. 1 - February 2011

Adding the GPIO
To do something useful with our SoC, we need to provide some connection to the

outside world.

• Double Click on “GPIO” in the list to the left

The only settings that are important for us are “Instance Name” and “Data Width”. For

the tutorial we will just need 8 outputs, so leave the rest as default, but:

• Instance Name: Choose a logic name for the GPIOs, like “GPIO”

• Data Width: As we need 8 outputs, write 8

• Now press “OK”.

Generate the Verilog files
We are now finished setting up our SoC with the CPU, RAM and peripheral. The next

step is to generate the Verilog files, which will be imported into Xilinx ISE.

To start the generation process, click the blue G in the top bar.

TUT001 Porting the LM32 to Xilinx FPGAs

8/17

© TKJ Electronics Rev. 1 - February 2011

When you at the bottom of the screen, in the Console window, see the “Finish

Generator” message, it means that the Verilog files have now been generated.

2. Modify the generated Verilog files
Before we can import the Verilog files into Xilinx ISE, we have

to modify some of them, to make them match with the Xilinx

FPGAs. To do so you need to download our replacement files,

listed on the first page of this guide.

When this is done, you should open the project folder of the

LatticeMico project. In there you would see two folders,

“components” and “soc”. Enter the “components” folder. In there

you would see 3 folders, “gpio”, “lm32_top” and “wb_ebr_ctrl”. Those are the folders

which contains the Verilog code for the three different things we added to our SoC.

You should now replace the 4 files in these 3 folders with the corresponding re-

placement file, like shown in the image above. The last thing we should do is to re-

move this line from the “lm32_include_all.v” inside the “lm32_top” folder:
`include "pmi_def.v"

The “pmi_def.v” file, which this line is including, is a simulation file, though this simu-

lation is only possible with Lattice FPGAs! Now let’s move on and get the files im-

ported into Xilinx ISE.

TUT001 Porting the LM32 to Xilinx FPGAs

9/17

© TKJ Electronics Rev. 1 - February 2011

3. Import the Verilog files into Xilinx ISE
Import the Verilog files
As we have now modified the files, we are ready to import them into Xilinx ISE. First

you would have to create a project for you specific FPGA. In this tutorial we will be

making a project for the Xilinx Spartan 6 FPGA XC6SLX25 device.

After you have created a project, right click on the device name in the Hierarchy view,

and select “Add Source”.

TUT001 Porting the LM32 to Xilinx FPGAs

10/17

© TKJ Electronics Rev. 1 - February 2011

Next you should find the tut01.v file, in the “soc” directory in the Lattice project folder.

Press “OK” to the popup box, telling you if the source can be added. If everything

went well, you should now have a Hierachy looking like this.

TUT001 Porting the LM32 to Xilinx FPGAs

11/17

© TKJ Electronics Rev. 1 - February 2011

Create a wrapper for the LM32 Verilog files
As the files are now imported into our project, we should make a wrapper in either

Verilog or VHDL for the LM32 Verilog code. Right click on the device name in the

Hierarchy view, and select “New Source”. Next select “VHDL Module” or “Verilog

Module”.

 Verilog-wrapper VHDL-wrapper

This is the wrapper code in either Verilog or VHDL. When you have saved the wrap-

per file, you should notice that the wrapper file will be the Top Module, and that the

tut01 will be shown underneath.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity main is
 port (
 clk: in std_logic;
 rst: in std_logic;
 led: out std_logic_vector(7 downto
0)
);
end main;

architecture Behavioral of main is
 component tut01
 port (
 clk_i: in std_logic;
 reset_n: in std_logic;
 gpioPIO_OUT: out
std_logic_vector(7 downto 0)
);
 end component;
begin

 LM32: tut01
 port map (clk_i => clk, reset_n =>
rst, gpioPIO_OUT => led);

end Behavioral;

`timescale 1ns / 1ps

module main(
 input clk,
 input rst,
 output [7:0] led
);

tut01 SOC (
 .clk_i(clk),
 .reset_n(rst),
 .gpioPIO_OUT(led)
);

endmodule

TUT001 Porting the LM32 to Xilinx FPGAs

12/17

© TKJ Electronics Rev. 1 - February 2011

Create a constraint file for the FPGA
Now our wrapper is done, so let’s make the constraint file too. Right click on the Top

Module file in the Hierarchy view, and select “New Source”. Next select “Implementa-

tion Constraints File”.

The constraint file for the board I have (the ZTEX Spartan 6 module) contains the

following lines, but remember this can be different from board to board.

Constraint file for the ZTEX Spartan 6 module

4. Add the Xilinx Block RAM (BRAM)
Now when we are done with the wrapper and the constraint

file we are still missing the Xilinx Block RAM. You might

have noticed the orange question marks? Those indicate that something is missing.

To add a Xilinx Block RAM we

are going to use the Core Ge-

nerator, so one more time right

click on the Top Module file in

the Hierarchy view, and select

“New Source”. Next select “IP

(CORE Generator & Architec-

ture Wizard)”. As filename just

write “memory”, and then press

“Next”.

48 MHz EZ-USB clock
NET "clk" TNM_NET = "clk";
TIMESPEC "ts_clk" = PERIOD "clk" 20.833 ns HIGH 50 %;
NET "clk" LOC = "K14" | IOSTANDARD = LVCMOS33 ;

NET "led<0>" LOC = "A14" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<1>" LOC = "C13" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<2>" LOC = "D11" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<3>" LOC = "D12" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<4>" LOC = "F10" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<5>" LOC = "E11" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<6>" LOC = "E10" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;
NET "led<7>" LOC = "C10" | IOSTANDARD = LVCMOS33 | DRIVE = 12 ;

NET "rst" LOC = "B14" | IOSTANDARD = LVCMOS33 ;

http://www.ztex.de/usb-fpga-1/usb-fpga-1.11.e.html�

TUT001 Porting the LM32 to Xilinx FPGAs

13/17

© TKJ Electronics Rev. 1 - February 2011

Now you should find and select “Memories & Storage Elements → RAMs & ROMs →

Block Memory Generator”.

In the Wizard you should just leave everything as default except the following:

• Write Width (page 2) → 32

o We set this to 32 as we are using a 32-bit architecture, and therefor the

RAM should also be 32-bit

• Write Depth (page 2) → 1024

o We set this to 1024, because we told the Lattice to have a RAM of 4096

bytes, which is equal to 1024 32-bit variables (4096 / 4)

• Use RSTA Pin (page 4) → Should be checked

When

this is done, press “Generate” – this can take a while depending on your computer.

TUT001 Porting the LM32 to Xilinx FPGAs

14/17

© TKJ Electronics Rev. 1 - February 2011

When the Block RAM generation has finished the question

marks should have disappeared, and been replaced by a

lightning bulb. Now we have generated the memory for our

SoC, so the last thing to do now is to make the code that is

going to be stored inside that RAM!

5. Hello World example for the processor
Create and compile the Hello World example
Head back to the LatticeMico32 System IDE and select the C/C++ perspective. Next

we should add a new C project.

• File → New → Mico32 Managed Make C Project

Name the system what you want, but make sure the MSB System is set to the MSB

you made in the beginning. Press “Finish” when it’s correct.

In the left you will now see the new project. Right click to add the C file.

• New → Source File

• Name the source file main.c

TUT001 Porting the LM32 to Xilinx FPGAs

15/17

© TKJ Electronics Rev. 1 - February 2011

At this moment you should now see a blank window where you can write. In there

you should add the following code which makes the 8 LEDs, on our GPIO, alternate

(blink).

Hello World code for the LM32 processor

Make sure the “gpio” in the code is the same as the name of your GPIO (if you

named it differently). When this is done, go to “Project → Build All” to compile the

project. This would make an ELF file, which we are now going to convert into an Intel

HEX file.

#include "MicoUtils.h"
#include "MicoGPIO.h"
#include "stdio.h"
#include "DDStructs.h"
#include "LookupServices.h"
#include "MicoFileDevices.h"

int main(void){
 unsigned char cnt = 0;
 int i;

 MicoGPIOCtx_t *leds = (MicoGPIOCtx_t *)MicoGetDevice("gpio");

 while(1){
 MICO_GPIO_WRITE_DATA(leds, 0xAA000000);
 MicoSleepMilliSecs(100);

 MICO_GPIO_WRITE_DATA(leds, 0x55000000);
 MicoSleepMilliSecs(100);
 }

 return(0);

}

TUT001 Porting the LM32 to Xilinx FPGAs

16/17

© TKJ Electronics Rev. 1 - February 2011

Convert the ELF file into an Intel HEX file

When the build is done (“Build complete for project…”) you should open the “Lattice-

Mico32 System SDK Shell”, which has also been installed.

In that shell you navigate to the debug folder in the C-project directory. When you are

in the debug folder, you write the following command to create an Intel HEX file.

“lm32-elf-objcopy LEDBlink.elf -O ihex LEDBlink.hex”

Replace the “LEDBlink” with the name of your C-project if different. Now should

should have an Intel HEX file in the debug folder.

Convert the Intel HEX file into a Xilinx Coefficient (.COE)

Unfortunately we can’t load a HEX file directly into

the Xilinx Block RAM, so it has to be converted into a

so called Xilinx Coefficient. This can be done with

our “IHEX2COE” program. Start the program and

press “Open Intel HEX”. Now find and select the

HEX file, generated previously. Next press “Convert

and Save Xilinx COE” and save the Xilinx Coefficient file somewhere (remember the

.COE extension)

TUT001 Porting the LM32 to Xilinx FPGAs

17/17

© TKJ Electronics Rev. 1 - February 2011

Loading the Xilinx Coefficient into the Block RAM

The last thing to do now is just to load the Coefficient file into the Block RAM and

then synthesize. Reopen the Xilinx ISE and the project, and double-click on the

“memory”, the one with the lightning bulb at the left. The Core Generator would now

open again.

Go to page 3 and check the “Load Init File”. You should now be able to click

“Browse” and select the .COE file generated previously. When the file has been se-

lected just press “Generate” – again this could take a while depending on your com-

puter. Press “OK” to the popup box, asking you to confirm overwriting.

Now there is only one thing left to do, and it is to Synthesize the project and Gener-

ate a bit-file. Do this by selecting the Top Module and then double-click on the

“Generate Programming File”.

